Human decisions are increasingly supported by decision support systems (DSS). Humans are required to remain “on the loop,” by monitoring and approving/rejecting machine recommendations. However, use of DSS can lead to overreliance on machines, reducing human oversight. This paper proposes “reflection machines” (RM) to increase meaningful human control. An RM provides a medical expert not with suggestions for a decision, but with questions that stimulate reflection about decisions. It can refer to data points or suggest counterarguments that are less compatible with the planned decision. RMs think against the proposed decision in order to increase human resistance against automation complacency. Building on preliminary research, this paper will (1) make a case for deriving a set of design requirements for RMs from EU regulations, (2) suggest a way how RMs could support decision-making, (3) describe the possibility of how a prototype of an RM could apply to the medical domain of chronic low back pain, and (4) highlight the importance of exploring an RM’s functionality and the experiences of users working with it.