We prove that maximal annuli in 𝕃3 bounded by circles, straight lines or cone points in a pair of parallel spacelike planes are part of either a Lorentzian catenoid or a Lorentzian Riemann’s example. We show that under the same boundary condition, the same conclusion holds even when the maximal annuli have a planar end. Moreover, we extend Shiffman’s convexity result to maximal annuli; but by using Perron’s method we construct a maximal annulus with a planar end where a Shiffman-type result fails.