Recent studies have demonstrated that metabotropic glutamate receptor 5 (mGluR5) antagonists decrease alcohol self-administration and suggest that the anti-craving medication, acamprosate, may also act to decrease mGluR5 function. To address the role of mGluR5 in behavioural actions of ethanol and acamprosate, we compared mutant mice with deletion of the mGluR5 gene and mice treated with a mGluR5 antagonist (MPEP) or acamprosate. Lack of mGluR5 or administration of MPEP reduced the severity of alcohol-induced withdrawal (AW), increased the sedative effect of alcohol (duration of loss of righting reflex; LORR), and increased basal motor activity. The motor stimulation produced by ethanol was blocked by deletion of mGluR5, but not by injection of MPEP. Both acamprosate and MPEP increased ethanol-induced LORR and reduced AW. Importantly, the protective effects of both MPEP and acamprosate on AW were found when the drugs were injected before, but not after, injection of ethanol. This indicates that the drugs prevented development of dependence rather than merely producing an anticonvulsant action. No effects of acamprosate or MPEP on ethanol-induced LORR and AW were found in mGluR5 knockout mice, demonstrating that mGluR5 is required for these actions. mGluR5 null mutant mice showed decreased alcohol consumption in some, but not all, tests. These data show the importance of mGluR5 for several actions of alcohol and support the hypothesis that some effects of acamprosate require mGluR5 signalling.