We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove two theorems concerning indestructibility properties of the first two strongly compact cardinals when these cardinals are in addition the first two measurable cardinals. Starting from two supercompact cardinals
$\kappa _1 < \kappa _2$
, we force and construct a model in which
$\kappa _1$
and
$\kappa _2$
are both the first two strongly compact and first two measurable cardinals,
$\kappa _1$
’s strong compactness is fully indestructible (i.e.,
$\kappa _1$
’s strong compactness is indestructible under arbitrary
$\kappa _1$
-directed closed forcing), and
$\kappa _2$
’s strong compactness is indestructible under
$\mathrm {Add}(\kappa _2, \delta )$
for any ordinal
$\delta $
. This provides an answer to a strengthened version of a question of Sargsyan found in [17, Question 5]. We also investigate indestructibility properties that may occur when the first two strongly compact cardinals are not only the first two measurable cardinals, but also exhibit nontrivial degrees of supercompactness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.