The Spelling Theorem of B. B. Newman states that for a one-relator group (a1, … | Wn), any nontrivial word which represents the identity must contain a (cyclic) subword of W±n longer than Wn−1. We provide a new proof of the Spelling Theorem using towers of 2-complexes. We also give a geometric classification of reduced disc diagrams in one-relator groups with torsion. Either the disc diagram has three 2-cells which lie almost entuirly along the bounday, or the disc diagram looks like a ladder. We use this ladder theorem to prove that a large class of one-relator groups with torsion are locally quasiconvex.