Forty pregnant F1 crossbred dairy cows (20 Friesian × Boran and 20 Simmental × Boran) were stratified in a 2 × 2 diet × work factorial experiment (not working-not supplemented, NWNS; not working-supplemented, NWS; working-not supplemented, WNS; and working-supplemented, WS). Working cows pulled sledges 100 days/year (pull = 350 to 450 N, 4 h/day, 4 days/week). Work output of supplemented and non-supplemented cows was similar over 1 and 2 years. Over all 3 years, dry-matter intake relative to metabolic body size (g/kg M0.75 was greater for working, compared with non-working cows. Body-weight changes and body condition score were similar for working and non-working cows. Non-supplemented cows lost weight throughout the first 2-year period, while supplemented cows tended to maintain or gain body weight over 1 and 3 years. Over 2 years, supplementation of working cows proportionately reduced live-weight loss by 0.73 and doubled the number of conceptions and parturitions. Days in milk, milk, milk fat and protein yields were similar for working and non-working cows, but were greater for supplemented, compared with non-supplemented, cows. Total conceptions and calves born in all 3 years tended to be greater for supplemented and non-working compared with non-supplemented and working cows. A productivity index (PI) that took into account food intake was calculated. The PI for supplemented cows over 2 years was greater than that for non-supplemented cows. Meanwhile the PI was similar for working and non-working cows over all periods considered. A similar PI for working and non-working cows under supplementation indicates potential of on-farm adoption of a cow traction technology that includes improved food production and ng strategies.