Consider a $C^{2}$ family of mixing $C^{4}$ piecewise expanding unimodal maps $t\in [a,b]\mapsto f_{t}$, with a critical point $c$, that is transversal to the topological classes of such maps. Given a Lipchitz observable $\unicode[STIX]{x1D719}$ consider the function $$\begin{eqnarray}{\mathcal{R}}_{\unicode[STIX]{x1D719}}(t)=\int \unicode[STIX]{x1D719}\,d\unicode[STIX]{x1D707}_{t},\end{eqnarray}$$ where $\unicode[STIX]{x1D707}_{t}$ is the unique absolutely continuous invariant probability of $f_{t}$. Suppose that $\unicode[STIX]{x1D70E}_{t}>0$ for every $t\in [a,b]$, where $$\begin{eqnarray}\unicode[STIX]{x1D70E}_{t}^{2}=\unicode[STIX]{x1D70E}_{t}^{2}(\unicode[STIX]{x1D719})=\lim _{n\rightarrow \infty }\int \left(\frac{\mathop{\sum }_{j=0}^{n-1}\left(\unicode[STIX]{x1D719}\circ f_{t}^{j}-\int \unicode[STIX]{x1D719}\,d\unicode[STIX]{x1D707}_{t}\right)}{\sqrt{n}}\right)^{2}\,d\unicode[STIX]{x1D707}_{t}.\end{eqnarray}$$
We show that $$\begin{eqnarray}m\left\{t\in [a,b]:t+h\in [a,b]\text{ and }\frac{1}{\unicode[STIX]{x1D6F9}(t)\sqrt{-\log |h|}}\left(\frac{{\mathcal{R}}_{\unicode[STIX]{x1D719}}(t+h)-{\mathcal{R}}_{\unicode[STIX]{x1D719}}(t)}{h}\right)\leqslant y\right\}\end{eqnarray}$$ converges to $$\begin{eqnarray}\frac{1}{\sqrt{2\unicode[STIX]{x1D70B}}}\int _{-\infty }^{y}e^{-\frac{s^{2}}{2}}\,ds,\end{eqnarray}$$ where $\unicode[STIX]{x1D6F9}(t)$ is a dynamically defined function and $m$ is the Lebesgue measure on $[a,b]$, normalized in such way that $m([a,b])=1$. As a consequence, we show that ${\mathcal{R}}_{\unicode[STIX]{x1D719}}$ is not a Lipchitz function on any subset of $[a,b]$ with positive Lebesgue measure.