We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The theory of Baranger is discussed, relating it to the approach taken by Anderson in the last chapter and that taken by Fano in the one to follow. Baranger is concerned to describe pressure broadening in a band of close, overlapping lines. His original concern was with line broadening by fast-moving electrons in a plasma, which allowed him to use the impact approximation, but not to assume that collisions may be associated with classical paths. For this reason, although matter here is in the form of neutral molecules, the use of Baranger’s theory in its most general form requires that collisions be treated in terms of quantum scattering theory. In forming the correlation function, Baranger sets the algebra in a product space where line vectors take the place of the energy states used by Anderson, and the optical cross-section that governs line broadening is replaced by the matrix of an operator in line space, with line widths and shifts on the diagonal and line coupling parameters for the other elements. In the case of isolated lines, Anderson’s theory may be regained, but the introduction of line space paved the way, later on, for a much more general viewpoint.
The focus here is on the approach taken by Anderson, which extends previous work by including the possibility that collisions will cause transitions in the radiator. Anderson confines himself to spectral lines that may be considered isolated from one another, and will, therefore, be broadened independently, and the start point is the correlation function of the radiatively active dipole, a quantum mechanical average formed from the states and operators of the gas system. This is treated as an ensemble average, in line with later chapters, and Anderson’s use of a time average is relegated to an appendix. However, the two approaches eventually converge, and both lead to a concern for the average effect on the lines as the radiator encounters an ensemble of single binary collisions on classical trajectories. Under the impact approximation, the correlation function may be greatly simplified, and expressions arise for the shift and width of a spectral line in terms of an optical cross-section that may be approached through a low order perturbative approximation. Within this, contributions due to phase shifts, elastic reorientations and inelastic transfers may all be distinguished.
Presenting the quantum mechanical theory of pressure broadening and its application in atmospheric science, this is a unique treatment of the topic and a useful resource for researchers and professionals alike. Rayer proceeds from molecular processes to broad scale atmospheric physics to bring together both sides of the problem of remote sensing. Explanations of the relationship between a series of increasingly general theoretical papers are provided and all key expressions are fully derived to provide a firm understanding of assumptions made as the subject evolved. This book will help the atmospheric physicist to cross into the quantum world and appreciate the more theoretical aspects of line shape and its importance to their own work.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.