We present qualitative and quantitative comparisons of various analytical and numerical approximation methods for calculating a position of the early exercise boundary of American put options paying zero dividends. We analyse the asymptotic behaviour of these methods close to expiration, and introduce a new numerical scheme for computing the early exercise boundary. Our local iterative numerical scheme is based on a solution to a nonlinear integral equation. We compare numerical results obtained by the new method to those of the projected successive over-relaxation method and the analytical approximation formula recently derived by Zhu [‘A new analytical approximation formula for the optimal exercise boundary of American put options’, Int. J. Theor. Appl. Finance9 (2006) 1141–1177].