In the context of abstract elementary classes (AECs) with a monster model, several possible definitions of superstability have appeared in the literature. Among them are no long splitting chains, uniqueness of limit models, and solvability. Under the assumption that the class is tame and stable, we show that (asymptotically) no long splitting chains implies solvability and uniqueness of limit models implies no long splitting chains. Using known implications, we can then conclude that all the previously-mentioned definitions (and more) are equivalent:
This gives evidence that there is a clear notion of superstability in the framework of tame AECs with a monster model.