Let S be the semigroup with identity, generated by x and y, subject to y being invertible and yx = xy2. We study two Banach algebra completions of the semigroup algebra ℂS. Both completions are shown to be left-primitive and have separating families of irreducible infinite-dimensional right modules. As an appendix, we offer an alternative proof that ℂS is left-primitive but not right-primitive. We show further that, in contrast to the completions, every irreducible right module for ℂS is finite dimensional and hence that ℂS has a separating family of such modules.