We examined the effect of a tidal-mixing front on the three-dimensional distribution of larval fish habitats (LFHs) in the Midriff Archipelago Region in the Gulf of California during winter. Zooplankton and environmental variables were sampled from 0 to 200 m in 50 m strata. Four LFHs were defined in association with the front, two on the northern side and two on the southern side. The northern LFHs were: (1) the Mainland Shelf Habitat, located from the surface to 100 m depth on the north-east mainland shelf, characterized mainly by the presence of Citharichtys fragilis; and (2) the Wide Distribution Habitat, extending from north-west to south across the front from the surface to 200 m depth, dominated by the ubiquitous Engraulis mordax. The southern LFHs were: (3) the Eddy Zone Habitat, defined nearly on an anticyclonic eddy, with the highest larval abundance and richness from the surface to 100 m depth, dominated by Leuroglossus stilbius; and (4) the Southern Gulf Habitat, associated with low temperature waters from the southern Gulf of California, dominated by southern-gulf species (e.g. Scomber japonicus and Sardinops sagax). Despite the weak stratification and low thermal contrast (~1.5°C) across the south front compared to summer (~3°C), our results demonstrate that the frontal zone may influence the formation of planktonic habitats even during generally homogeneous periods, which may also be relevant in other regions of the world.