The effects of soluble fiber inclusion in gestation diets with varying fermentation characteristics (fermentation kinetics and short-chain fatty acids (SCFA)-profile) on lactational feed intake of sows and their piglet growth over two parities were investigated using an in vitro–in vivo methodology. After breeding, 90 multiparous Landrace sows were randomized to one of three experimental diets: the control (CON) diet, konjac flour (KF) diet or sugar beet pulp (SBP) diet. All diets had similar levels of net energy, CP, insoluble fiber and NDF, but KF and SBP diets had higher soluble fiber levels than the CON diet. During gestation, the sows were restrictively fed with three different diets, but during lactation, all the sows were similarly fed ad libitum. The three gestation diets were enzymatically hydrolyzed using pepsin and pancreatin, and enzymolyzed residues were used in in vitro fermentation. Gas and SCFA production were monitored during fermentation. After fermentation, enzymolyzed residues of KF or SBP diets resulted in higher final asymptotic gas volume than those of the CON diet. The enzymolyzed residues of KF diet were mainly part of rapidly fermented fractions, whereas those of SBP diet were mainly part of slowly fermented fractions. In addition, the acetic acid, butyric acid and total SCFA concentrations of enzymolyzed residues of KF diet were higher (P<0.01) than the control and SBP diets. In the in vivo studies, on day 90 of gestation, the KF diet sows had higher plasma SCFA concentration (P<0.05) at 4 h after feeding than the CON diet sows. Furthermore, the KF diet sows had lower plasma free fatty acid (FFA) concentration (P<0.01) at 4 h after feeding, and a lower value of homeostasis model assessment (HOMA)-insulin resistance (P<0.05), but a higher value of HOMA-insulin sensitivity (P<0.01). The KF diet sows also consumed more feed during lactation (P<0.01) and weaned significantly heavier pigs (P<0.01) than the CON diet sows. The overall results showed that the high fermentation capacity KF diet contributed to an increased lactational feed intake and improved performance of piglets in the second reproductive cycle.