We study failure rate monotonicity and generalised convex transform stochastic ordering properties of random variables, with an emphasis on applications. We are especially interested in the effect of a tail-weight iteration procedure to define distributions, which is equivalent to the characterisation of moments of the residual lifetime at a given instant. For the monotonicity properties, we are mainly concerned with hereditary properties with respect to the iteration procedure providing counterexamples showing either that the hereditary property does not hold or that inverse implications are not true. For the stochastic ordering, we introduce a new criterion, based on the analysis of the sign variation of a suitable function. This criterion is then applied to prove ageing properties of parallel systems formed with components that have exponentially distributed lifetimes.