Antennas installed on aircraft are used for communications as well as for various radio navigation systems such as direction finders, distance measuring systems, and altimeters. Generally, these systems use blade antennas operating in the L frequency band. Recently, inverted-hat empty section monopole antennas have been found to be good candidates for such uses. In this study, we propose a new design of inverted-hat antenna based on optimized elliptical shapes and a filled cavity. The dielectric material added in the cavity helps to improve the monopole stability and to adjust the resonant frequency of the antenna. The proposed antenna meets the distance measuring equipment requirements, namely an omnidirectional radiation pattern in the H-plane, a vertical polarization, a frequency band from 960 MHz to 1.22 GHz, and a gain better than 1 dB. This antenna is entirely made of aluminum in order to obtain a homogeneity with the aluminum fuselage. In addition, the solution proposed brings a better protection against weather conditions. The antenna performance is analyzed on the basis of simulation and measurement results.