We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A grand challenge in representation learning is the development of computational algorithms that learn the explanatory factors of variation behind high-dimensional data. Representation models (encoders) are often determined for optimizing performance on training data when the real objective is to generalize well to other (unseen) data. This chapter provides an overview of fundamental concepts in statistical learning theory and the information-bottleneck principle. This serves as a mathematical basis for the technical results, in which an upper bound to the generalization gap corresponding to the cross-entropy risk is given. When this penalty term times a suitable multiplier and the cross-entropy empirical risk are minimized jointly, the problem is equivalent to optimizing the information-bottleneck objective with respect to the empirical data distribution. This result provides an interesting connection between mutual information and generalization, and helps to explain why noise injection during the training phase can improve the generalization ability of encoder models and enforce invariances in the resulting representations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.