We propose a simple and practical solution to remove artificial contrast inhibiting direct interpretation of atomic arrangements in aberration-corrected TEM. The method is based on a combination of “image subtraction” for elimination of nonlinear components in images and newly improved “image deconvolution” for proper compensation of nonflat phase contrast transfer function. The efficiency of the method is shown by experimental and simulation data of typical materials such as gold, silicon, and magnesium oxide. The hypothetical results from further improvements of TEM instruments are also simulated. It is concluded that we can approach actual atomic structures by using the present method, that is, a proper combination of a Cs corrector, image subtraction, and image deconvolution processes.