The formation and the patterning of the coronary vasculature are critical to the development and pathology of the heart. Alterations in cytokine signaling and biomechanical load can alter the vascular distribution of the vessels within the heart. Changes in the physical patterning of the vasculature can have significant impacts on the relationships of the pressure-flow network and distribution of critical growth and survival factors to the tissue. Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates several biological processes, including vasculogenesis. Using both immunohistological and cardioangiographic analyses, we tested the hypothesis that IL-6-loss will result in decreased vessel density, along with changes in vascular distribution. Moreover, given the impact of vascular patterning on pressure-flow and distribution mechanics, we utilized non-Euclidean geometrical fractal analysis to quantify the changes in patterning resulting from IL-6-loss. Our analyses revealed that IL-6-loss results in a decreased capillary density and increase in intercapillary distances, but does not alter vessel size or diameter. We also observed that the IL-6−/− coronary vasculature had a marked increase in fractal dimension (D value), indicating that IL-6-loss alters vascular patterning. Characterization of IL-6-loss on coronary vasculature may lend insight into the role of IL-6 in the formation and patterning of the vascular bed.