We give a finitary criterion for the convergence of measures on non-elementary geometrically finite hyperbolic orbifolds to the unique measure of maximal entropy. We give an entropy criterion controlling escape of mass to the cusps of the orbifold. Using this criterion, we prove new results on the distribution of collections of closed geodesics on such an orbifold, and as a corollary, we prove the equidistribution of closed geodesics up to a certain length in amenable regular covers of geometrically finite orbifolds.