Regression analysis of clomazone adsorption on 19 soils and sediments yielded a positive correlation and linear relationship between distribution adsorption constants (Kd) and soil organic carbon content. The agreement of the experimental mean Koc with Koc values predicted from the octanol-water partition coefficient and water solubility of clomazone indicated hydrophobic bonding was one mechanism responsible for adsorption. Kaolinite and montmorillonite had a strong affinity for clomazone, and adsorption increased with the charge of the cation on the clay exchange sites. Adsorption was not correlated with the clay content of soils and sediments, indicating that organic coatings on clay in soils may block adsorption sites on clay surfaces. The adsorption of clomazone on some soils and sediments with high clay contents was greater than predicted based on organic carbon content alone, however, indicating clay contributed to adsorption on these samples.