Defective color vision comes in various forms and its frequency varies from population to population. This article is concerned with only the sex-linked form of essential hereditary color blindness. A model of a ‘small’ population is constructed to explore the dynamics of occurrence of color blindness. Different mutation rates are introduced for eggs and sperm. Birth and death rates of affected individuals are assumed to be the same as those in the unaffected. Simulation demonstrates that large changes in frequency occur randomly from the combined effects of mutation, transmission of genes from generation to generation and births and deaths. A reference is made to the hypothesis that observed differences in rates are due to selection in the transition from hunter-gatherer to farmer.