Perceptual range is used as a measure of the ability of animals to perceive the landscape, and can be used to infer functional connectivity between habitat patches such as forest remnants. A relationship of perceptual range with body mass was proposed by Mech and Zollner, but effects of life-history traits and environmental conditions were also acknowledged. We evaluated perceptual ranges and the influence of body mass, wind speed and direction, and grass height in four marsupial species of the Atlantic Forest of south-eastern Brazil. Release experiments were conducted and orientation towards the forest was determined using the spool-and-line technique. In 111 animals released, Didelphis aurita had the highest perceptual range (200 m), followed by Philander frenatus and Micoureus paraguayanus (100 m), and by Marmosops incanus (< 100 m). None of the species presented homing behaviour, and there was no difference in orientation abilities between sexes. Perceptual range was overestimated based on the equations of Mech and Zollner, but species were ordered in perceptual range according to their body size. Distance to the forest was a common determinant of the orientation in P. frenatus and M. paraguayanus, but grass height and wind direction were also important. Orientation of Didelphis aurita was determined by wind direction, showing anemotactic behaviour. Body mass is likely to affect perceptual ranges in didelphid marsupials, but only in interspecific comparisons. Within a species perception depends on the environmental context. Variables other than distance must be considered to estimate functional connectivity of the landscape based on perceptual range.