The area ‘Het Gooi’ in the Netherlands is part of a Pleistocene ice-pushed ridge system that partially drowned during the Holocene upon sea level and associated groundwater rise. As a result, the ridge system was gradually encroached by peat. From the late Middle Ages onward, man reclaimed the peatlands surrounding Het Gooi, heavily reducing their extension and lowering the regional groundwater level by increasingly intensive drainage. Based on historical and archaeological arguments, several authors assume that the Holocene peat cover in the border zones of ‘Het Gooi’ formed the extension of large raised peat bogs that formed further to the west and east, respectively. They presume that in the late Middle Ages these extensions reached ‘upslope’ to a maximum altitude of 3 m + NAP (Dutch Ordnance Datum – approximating mean sea level). However, the original extension is difficult to reconstruct, as this peat has disappeared as a result of its exploitation and oxidation, if having been present at all.
In this study, the maximum extension of the Holocene peat cover on the ice-pushed ridge system was reconstructed based on soil characteristics. Used soil characteristics concerned the presence of iron coatings around sand grains and the upper boundary of gleyic features, because these are indicators for the mean highest groundwater level (MHG). For peat to form, this MHG needs to be at or just above the ground surface for most of the year. Based on study of a number of soil transects, we reconstructed to what maximum altitude peat encroachment may have occurred. This ‘maximum extension’ can alternatively be described as the maximum altitude of the bottom of the peat onlapping the ridge system.
In the western border zone, this peat cover was found to have reached to c. NAP or just above, near Hilversum. No indications were found for the occurrence of raised bogs. We conclude that the phreatic groundwater level in this zone was controlled by the sea level and associated lake levels (Naardermeer and Horstermeer), a dominant role being played by the shallow presence of Pleistocene formations with a high hydraulic conductivity. In the eastern border zone, altitudes were more variable and in places reached 2 m + NAP. Peat at this higher elevation probably formed under the influence of a higher phreatic groundwater level, induced by the presence of a clayey Eemian fill with low hydraulic conductivity in the adjacent glacial basin (the Eem valley).
This study demonstrates the value of detailed soil transect studies for palaeogeographical reconstructions of the former Holocene peat cover in Pleistocene landscapes of NW Europe. It also provides independent data for validation of geohydrological models for such landscapes.