We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Genomewide association studies (GWASs) on antidepressant efficacy have yielded modest results. A possible reason is that response is influenced by other factors, which possibly interact with genetic variation. We used a GWAS model to predict antidepressant response, by including predictors previously known to affect response, such as quality of life (QoL). We also evaluated the association between genes, previously implicated in gene–environment (G × E) interactions, and response using an enrichment analysis.
Method
We examined a sample of 1426 depressed patients from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial: 774 responders, 652 non-responders and 418 865 single nucleotide polymorphisms (SNPs) were analysed. First, in a GWAS model, we investigated whether genetic variations interact with patients' levels of QoL to predict response, after controlling for demographic characteristics, severity and population stratification. Second, we conducted an enrichment analysis exploring whether candidate genes that have emerged from prior G × E interaction studies on depression are associated with treatment response.
Results
The GWAS model, with QoL as a moderator, yielded one SNP (rs520210) associated with response in the NEDD4L gene (p = 3.64 × 10−8). In the Caucasian sample only, we observed a drop in significance for this SNP. The enrichment analysis showed that SNPs within serotonergic genes contained more significant markers that predicted response, compared with a random set of genes in the genome.
Conclusions
Our findings point to possible target genes, which are proposed for further independent replication. Our enrichment analysis provides further support, in a genomewide context, of the role of serotonergic genes in influencing antidepressant response.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.