Impartial Solitaire Clobber is a one-player version of the combinatorial game Clobber, introduced by Albert et al. in 2002. The initial configuration of Impartial Solitaire Clobber is a graph, such that there is a stone placed on each of its vertex, each stone being black or white. A move of the game consists in picking a stone, and clobbering an adjacent stone of the opposite color. By clobbering we mean that the clobbered stone is removed from the graph, and replaced by the clobbering one. The aim is to make a sequence of moves leaving the minimum number of stones on the graph; this number is called the reducibility value of the configuration. As any one-player game, Solitaire Clobber is essentially an optimization problem, whose resolution may give bounds on the two-player version of the game. As an optimization problem, Solitaire Clobber can be considered as a constrained version of the underlying optimization problem related to Hamiltonian path. This enables to show that Solitaire Clobber is NP-hard. Solitaire Clobber was already studied in various graph structures, including paths, cycles, trees, and Hamming graphs. In this paper we investigate the problem in complete multipartite graphs. In particular, we give a linear-time algorithm computing the reducibility value of any configuration in complete multipartite graphs. We also address some extremal questions related to Solitaire Clobber in general graphs.