The physical structure value of conserved grass/clover forages of spring harvest was evaluated by assessing effects of harvest time, conservation method, iNDF/NDF ratio and NDF intake (NDFI) per kg BW on chewing activity and fecal particle size in dairy heifers. A mixed sward consisting of ryegrass (Lolium perenne), red clover (Trifolium pratense) and white clover (Trifolium repens) was harvested in 2009 on May 9 (early) and 25 (late), and both cuts were conserved as silage and hay. The early silage, early hay, late silage and late hay contained dry matter (DM) of 454, 842, 250 and 828 g/kg, and NDF of 315, 436, 414 and 503 g/kg DM, respectively. Forages were fed as sole feed to four Jersey heifers of 435±30 kg BW in a 4×4 Latin square experiment. Feeding level was 90% of individual ad libitum intake, divided equally across two daily meals offered at 0800 and 1530 h. Chewing activity was estimated from recorded jaw movements (JM) oscillations continuously logged for 96 h and summarized per 24 h as mean effective rumination time and eating time. Eating behavior was further observed during four 20-min test meals. Weight proportion of large feces particles (>1.0 mm) and geometric mean fecal particle size (GPS) were calculated. Potentially indigestible NDF (iNDF) was estimated by incubation for 288 h in situ. The daily DM intake (DMI) decreased with progressing maturity at harvest (P<0.001) while daily NDFI was unaffected by harvest time (P>0.05). Earlier harvest led to less rumination per kg NDFI (P<0.01), similar eating time per kg NDFI (P>0.05) and similar proportion of large particles (P>0.01) compared with later harvest. Rumination time per kg NDFI decreased with higher NDFI per kg BW (P<0.001) and with lower iNDF/NDF ratio (P<0.01). Content and potential digestibility of NDF was greater in hay than in silage from the same harvest probably due to field loss and therefore confounded effects of conservation method. This study of high digestibility grass/clover silage and hay showed that NDF content and NDFI per kg BW affect fecal particle size and rumination time per kg NDF, and suggests implementation of NDFI per kg BW in systems evaluating physical structure in diets.