Par une méthode entièrement nouvelle utilisant les déformations $p$-adiques de pentes positives de représentations automorphes pour $\mathrm{GSp}_{4/\mathbb{Q}}$, nous prouvons que le $p$-groupe de Selmer $H^1_f(\mathbb{Q},V_f(k))$ associé à une forme modulaire $f$ de poids $2k$ et ordinaire en $p$ est infini si l’ordre d’annulation à l’entier $k$ de la fonction $L$ de $f$ est impair.
By an entirely new method that makes use of $p$-adic deformations of automorphic representations of $\mathrm{GSp}_{4/\mathbb{Q}}$, we prove that the $p$-adic Selmer group $H^1_f(\mathbb{Q},V_f(k))$ associated to a modular form $f$ of weight $2k$ that is ordinary at $p$ is infinite if the order of vanishing at $k$ of the $L$-function of $f$ is odd.