We discuss, in this paper, a common flux-free method for the computation of strict errorbounds for linear and nonlinear finite-element computations. In the linear case, the errorbounds are on the energy norm of the error, while, in the nonlinear case, the concept oferror in constitutive relation is used. In both cases, the error bounds are strict in thesense that they refer to the exact solution of the continuous equations, rather than tosome FE computation over a refined mesh. For both linear and nonlinear solid mechanics,this method is based on the computation of a statically admissible stress field, which isperformed as a series of local problems on patches of elements. There is no requirement tosolve a previous problem of flux equilibration globally, as happens with othermethods.