Consider the time-harmonic acoustic scattering from an extended elastic body surrounded by a finite number of point-like obstacles in a fluid. We assume point source waves are emitted from arrayed transducers and the signals of scattered near-field data are recorded by receivers not far away from the scatterers (compared to the incident wavelength). The forward scattering can be modeled as an interaction problem between acoustic and elastic waves together with a multiple scattering problem between the extend solid and point scatterers. We prove a necessary and sufficient condition that can be used simultaneously to recover the shape of the extended elastic solid and to locate the positions of point scatterers. The essential ingredient in our analysis is the outgoing-to-incoming (OtI) operator applied to the resulting near-field response matrix (or operator). In the first part, we justify the MUSIC algorithm for locating point scatterers from near-field measurements. In the second part, we apply the factorization method, the continuous analogue of MUSIC, to the two-scale scattering problem for determining both extended and point scatterers. Numerical examples in 2D are demonstrated to show the validity and accuracy of our inversion algorithms.