We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let be the scan statistic of window size r for a sequence of n bistate trials . The scan statistic Sn(r) has been successfully used in various fields of applied probability and statistics, and its distribution has been studied extensively in the literature. Currently, all existing formulae for the distribution of Sn(r) are rather complex, and they can only be numerically implemented when is a sequence of Bernoulli trials, the window size r is less than 20 and the length of the sequence n is not too large. Hence, these formulae have been limiting the practical applications of the scan statistic. In this article, we derive a simple and effective formula for the distribution of Sn(r) via the finite Markov chain embedding technique to overcome some of the limitations of the existing complex formulae. This new formula can be applied when is either a sequence of Bernoulli trials or a sequence of Markov dependent bistate trials. Selected numerical examples are given to illustrate our results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.