We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Goodstein’s principle is arguably the first purely number-theoretic statement known to be independent of Peano arithmetic. It involves sequences of natural numbers which at first appear to diverge, but eventually decrease to zero. These sequences are defined relative to a notation system based on exponentiation for the natural numbers. In this article, we provide a self-contained and modern analysis of Goodstein’s principle, obtaining some variations and improvements. We explore notions of optimality for notation systems and apply them to the classical Goodstein process and to a weaker variant based on multiplication rather than exponentiation. In particular, we introduce the notion of base-change maximality, and show how it leads to far-reaching extensions of Goodstein’s result. We moreover show that by varying the initial base of the Goodstein process, one readily obtains independence results for each of the fragments $\mathsf {I}\Sigma _n$ of Peano arithmetic.
Following our [6], though with somewhat different methods here, further variants of Goodstein sequences are introduced in terms of parameterized Ackermann–Péter functions. Each of the sequences is shown to terminate, and the proof-theoretic strengths of these facts are calibrated by means of ordinal assignments, yielding independence results for a range of theories: PRA, PA,
$\Sigma ^1_1$
-DC
$_0$
, ATR
$_0$
, up to ID
$_1$
. The key is the so-called “Hardy hierarchy” of proof-theoretic bounding finctions, providing a uniform method for associating Goodstein-type sequences with parameterized normal form representations of positive integers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.