This paper demonstrates workflows to incorporate text data into actuarial classification and regression tasks. The main focus is on methods employing transformer-based models. A dataset of car accident descriptions with an average length of 400 words, available in English and German, and a dataset with short property insurance claims descriptions, are used to demonstrate these techniques. The case studies tackle challenges related to a multilingual setting and long input sequences. They also show ways to interpret model output and to assess and improve model performance, by fine-tuning the models to the domain of application or to a specific prediction task. Finally, the paper provides practical approaches to handle classification tasks in situations with no or only few labelled data. The results achieved by using the language-understanding skills of off-the-shelf natural language processing (NLP) models with only minimal pre-processing and fine-tuning clearly demonstrate the power of transfer learning for practical applications.