We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $p$ be an odd prime. We construct a $p$-group $P$ of nilpotency class two, rank seven and exponent $p$, such that $\text{Aut}(P)$ induces $N_{\text{GL}(7,p)}(G_{2}(p))=Z(\text{GL}(7,p))G_{2}(p)$ on the Frattini quotient $P/\unicode[STIX]{x1D6F7}(P)$. The constructed group $P$ is the smallest $p$-group with these properties, having order $p^{14}$, and when $p=3$ our construction gives two nonisomorphic $p$-groups. To show that $P$ satisfies the specified properties, we study the action of $G_{2}(q)$ on the octonion algebra over $\mathbb{F}_{q}$, for each power $q$ of $p$, and explore the reducibility of the exterior square of each irreducible seven-dimensional $\mathbb{F}_{q}[G_{2}(q)]$-module.
Inspired by a construction by Bump, Friedberg, and Ginzburg of a two-variable integral representation on $\text{GS}{{\text{p}}_{4}}$ for the product of the standard and spin $L$-functions, we give two similar multivariate integral representations. The first is a three-variable Rankin-Selberg integral for cusp forms on $\text{PG}{{\text{L}}_{4}}$ representing the product of the $L$-functions attached to the three fundamental representations of the Langlands $L$-group $\text{S}{{\text{L}}_{\text{4}}}\left( \text{C} \right)$. The second integral, which is closely related, is a two-variable Rankin-Selberg integral for cusp forms on $\text{PGU}\left( 2,\,2 \right)$ representing the product of the degree $8$ standard $L$-function and the degree $6$ exterior square $L$-function.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.