We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study dynamical systems that have bounded complexity with respect to three kinds metrics: the Bowen metric $d_{n}$, the max-mean metric $\hat{d}_{n}$ and the mean metric $\bar{d}_{n}$, both in topological dynamics and ergodic theory. It is shown that a topological dynamical system $(X,T)$ has bounded complexity with respect to $d_{n}$ (respectively $\hat{d}_{n}$) if and only if it is equicontinuous (respectively equicontinuous in the mean). However, we construct minimal systems that have bounded complexity with respect to $\bar{d}_{n}$ but that are not equicontinuous in the mean. It turns out that an invariant measure $\unicode[STIX]{x1D707}$ on $(X,T)$ has bounded complexity with respect to $d_{n}$ if and only if $(X,T)$ is $\unicode[STIX]{x1D707}$-equicontinuous. Meanwhile, it is shown that $\unicode[STIX]{x1D707}$ has bounded complexity with respect to $\hat{d}_{n}$ if and only if $\unicode[STIX]{x1D707}$ has bounded complexity with respect to $\bar{d}_{n}$, if and only if $(X,T)$ is $\unicode[STIX]{x1D707}$-mean equicontinuous and if and only if it has discrete spectrum.
Let C(X, Y) denote the set of continuous functions from a metric space X to a metric space Y. Viewing elements of C(X, Y) as closed subsets of X × Y, we say {fn} converges topologically to f if Li fn = Lsfn = f. If X is connected, then topological convergence in C(X,R) does not imply pointwise convergence, but if X is locally connected and Y is locally compact, then topological convergence in C(X, Y) is equivalent to uniform convergence on compact subsets of X. Pathological aspects of topological convergence for seemingly nice spaces are also presented, along with a positive Baire category result.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.