We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Various order duplex structures are described from oceanic sequences of basaltic and associated pelagic–hemipelagic sedimentary rocks in the Ordovician (northern) part of the Southern Uplands accretionary complex. The general structure of the terrane as a whole strikes ENE, but each component lithological tract strikes NE or more northerly, oblique to the regional trend, making an en echelon outcrop pattern. Further oblique relationships between structures and lithologies can be mapped at larger scales, up to 1 km scale or more. These duplex structures are thought to be originally SE-verging, now partly overturned to the NW. Differences in the en echelon geometry, either sinistral or dextral, are explained by variable plunge of the original structures.
Peach & Home's first regional map of the Southern Uplands suggests an en echelon pattern of lithologies, implying large-scale duplex structures across the whole terrane. Here, the duplex structures are regarded as ubiquitous at both regional and smaller scales, suggesting considerable horizontal shortening. This was accommodated by such structures during underplating and out-of-sequence thrusting, in all parts of the accretionary prism, but particularly in the deeper tectonostratigraphic levels. The duplex structures are characteristic of ancient décollement zones.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.