We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To determine the functional integrity of the neural systems involved in emotional responding/regulation and response control/inhibition in youth (age 10–18 years) with disruptive behavioral disorders (DBDs: conduct disorder and/or oppositional defiant disorder) as a function of callous-unemotional (CU) traits.
Method
Twenty-eight healthy youths and 35 youths with DBD [high CU (HCU), n = 18; low CU (LCU), n = 17] performed the fMRI Affective Stroop task. Participants viewed positive, neutral, and negative images under varying levels of cognitive load. A 3-way ANOVA (group×emotion by task) was conducted on the BOLD response data.
Results
Youth with DBD-HCU showed significantly less activation of ventromedial prefrontal cortex (vmPFC) and amygdala in response to negative stimuli, compared to healthy youth and youth with DBD-LCU. vmPFC responsiveness was inversely related to CU symptoms in DBD. Youth with DBD-LCU showed decreased functional connectivity between amygdala and regions including inferior frontal gyrus in response to emotional stimuli. Youth with DBD (LCU and HCU) additionally showed decreased insula responsiveness to high load (incongruent trials) compared to healthy youth. Insula responsiveness was inversely related to ADHD symptoms in DBD.
Conclusions
These data reveal two forms of pathophysiology in DBD. One associated with reduced amygdala and vmPFC responses to negative stimuli and related to increased CU traits. Another associated with reduced insula responses during high load task trials and related to ADHD symptoms. Appropriate treatment will need to be individualized according to the patient's specific pathophysiology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.