California's interior grasslands have undergone dramatic changes during the last two centuries. Changes in land-use patterns and plant introductions after European contact and settlement resulted in the conversion of perennial-dominated grasslands to exotic annual grasses. More recently, the annual grasslands have been heavily invaded by the deeply rooted late-maturing forb yellow starthistle. This series of invasions and conversions has changed the community structure and phenology of the grasslands. We hypothesized that these changes have resulted in significant differences in soil water–use patterns in the grasslands. We studied soil water depletion and recharge patterns of three grassland community types dominated by perennial grasses, annual grasses, or yellow starthistle with contrasting phenology and rooting depths for 4 yr. Soil moisture measurements were taken every month from March to December in 1998, 1999, and 2000 and every other month in 2001. Measurements were taken with a neutron probe at depths of 30 to 150 cm at 30-cm intervals. The results indicate that the yellow starthistle community maintained a significantly drier soil profile than the annual grass community. The perennial grass community maintained an intermediate soil water content that was not significantly different from either of the other two communities. Significant time by community and depth by community interactions indicated that the yellow starthistle community continued depleting soil moisture later into the season and at deeper depths than the other grass communities. This study demonstrates the effect of plant invasion on soil water recharge and depletion patterns in California grasslands.