Buffelgrass [Pennisetum ciliare (L.) Link] is a drought-tolerant invasive grass that is a threat to native biodiversity in the drylands of the Americas and Australia. Despite efforts from land managers to control P. ciliare, management approaches tend to have mixed success, treatment results can be poorly communicated among entities, and there are few long-term controlled studies. In this literature review, we synthesize data from both peer-reviewed and “gray” literature on the efficacy of management techniques to control P. ciliare and the secondary impacts to native plant communities. Our search resulted in 42 unique sources containing a total of 229 studies that we categorized into 10 treatment types, which included herbicide, seeding, manual removal, fire, grazing, biocontrol, fire + additional treatments, manual removal + additional treatments, herbicide + additional treatments, and herbicide + manual removal. We found that treatments that used multiple techniques in tandem along with follow-up treatments were the most effective at controlling P. ciliare. Fewer than one-third of the studies reported impacts of management on native species, and the most commonly studied treatment (herbicide, N = 130) showed detrimental impacts on native plant communities. However, the average time between treatment and outcome measurement was only 15 mo; we suggest the need for more long-term studies of treatment efficacy and secondary impacts of treatment on the ecosystem. Finally, we conducted a second literature review on P. ciliare biology and traits for mechanisms that allows P. ciliare to alter the invaded environment to facilitate a competitive advantage over native species. We found evidence of self-reinforcing feedbacks of invasion being generated by P. ciliare through its interactions with water availability, nutrient cycling, and disturbance regimes. We developed a conceptual model of P. ciliare based on these feedback loops and offer management considerations based on its invasion dynamics and biology.