Structural characterization from powder diffraction of compounds not containing isolated molecules but three-dimensional infinite structure (alloys, intermetallics, framework compounds, extended solids) by direct space methods has been largely improved in the last 15 years. The success of the method depends very much on a proper modeling of the structure from building blocks. The modeling from larger building blocks improves the convergence of the global optimization algorithm by a factor of up to 10. However, care must be taken about the correctness of the building block, like its rigidity, deformation, bonding distances, and ligand identity. Dynamical occupancy correction implemented in the direct space program FOX has shown to be useful when merging excess atoms, and even larger building blocks like coordination polyhedra. It also allows joining smaller blocks into larger ones in the case when the connectivity was not a priori evident from the structural model. We will show in several examples of nonmolecular structures the effect of the modeling by correct structural units.