We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This new graduate textbook adopts a pedagogical approach to contemporary cosmology that enables readers to build an intuitive understanding of theory and data, and of how they interact, which is where the greatest advances in the field are currently being made. Using analogies, intuitive explanations of complex topics, worked examples and computational problems, the book begins with the physics of the early universe, and goes on to cover key concepts such as inflation, dark matter and dark energy, large‑scale structure, and cosmic microwave background. Computational and data analysis techniques, and statistics, are integrated throughout the text, particularly in the chapters on late-universe cosmology, while another chapter is entirely devoted to the basics of statistical methods. A solutions manual for end-of-chapter problems is available to instructors, and suggested syllabi, based on different course lengths and emphasis, can be found in the Preface. Online computer code and datasets enhance the student learning experience.
This chapter describes how large-scale structure -- the distribution of galaxies on the sky -- can be used to probe the cosmological model. We start by defining the density perturbation and its most fundamental statistical property -- the correlation function. We briefly review the evolution of density perturbations in the standard cosmological model, emphasizing key results. We next discuss the growth of cosmic structure, and segue into talking about the power spectrum of density perturbations, its theoretical description, and its measurements. This leads us to discuss structure formation in the universe more generally, the role of numerical (N-body) simulations, and the mass function. We end by discussing how the statistical properties of dark-matter halos, which can easily be modeled in simulations, are related to those of galaxies that we typically observe.
In Chapter 4, we look at nonresonant scattering, specifically Rayleigh and Raman scattering from linear molecules. We continue with the semiclassical (quantum) treatment, leading to the induced dipole moment and associated differential scattering cross section. Explicitly adding vibrational and rotational manifolds of the ground state, we show the results for all three regimes: Rayleigh, rotational Raman, and vibrational Raman scattering. We then apply these results to nitrogen and oxygen molecules and associate the results with macroscopic quantities, such as the index of refraction of an ensemble, or gas. From this point, we focus specifically on Rayleigh + vibrational Raman spectra of O2 and N2, determining vibrational and rotational constants and the thermal populations of the states, based on their molecular energies, which leads to the spectral strengths of individual lines. We finish this chapter with a description of the Cabannes spectrum and the effect of the density fluctuations on its lineshape, considering the success of theoretical models in reproducing these spectra in Knudson (low-density), kinetic (medium-density) and hydrodynamic (high-density) regimes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.