There are some connections between aging notions, stochastic orders, and expected utilities. It is known that the DRHR (decreasing reversed hazard rate) aging notion can be characterized via the comparative statics result of risk aversion, and that the location-independent riskier order preserves monotonicity between risk premium and the Arrow–Pratt measure of risk aversion, and that the dispersive order preserves this monotonicity for the larger class of increasing utilities. Here, the aging notions ILR (increasing likelihood ratio), IFR (increasing failure rate), IGLR (increasing generalized likelihood ratio), and IGFR (increasing generalized failure rate) are characterized in terms of expected utilities. Based on these observations, we recover the closure properties of ILR, IFR, and DRHR under convolution, and of IGLR and IGFR under product, and investigate the closure properties of the dispersive order, location-independent riskier order, excess wealth order, the total time on test transform order under convolution, and the star order under product. We have some new findings.