We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study local properties of the Bakry–Émery curvature function ${\mathcal{K}}_{G,x}:(0,\infty ]\rightarrow \mathbb{R}$ at a vertex $x$ of a graph $G$ systematically. Here ${\mathcal{K}}_{G,x}({\mathcal{N}})$ is defined as the optimal curvature lower bound ${\mathcal{K}}$ in the Bakry–Émery curvature-dimension inequality $CD({\mathcal{K}},{\mathcal{N}})$ that $x$ satisfies. We provide upper and lower bounds for the curvature functions, introduce fundamental concepts like curvature sharpness and $S^{1}$-out regularity, and relate the curvature functions of $G$ with various spectral properties of (weighted) graphs constructed from local structures of $G$. We prove that the curvature functions of the Cartesian product of two graphs $G_{1},G_{2}$ are equal to an abstract product of curvature functions of $G_{1},G_{2}$. We explore the curvature functions of Cayley graphs and many particular (families of) examples. We present various conjectures and construct an infinite increasing family of 6-regular graphs which satisfy $CD(0,\infty )$ but are not Cayley graphs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.