We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The intergrowths of Fe-rich corundum + Al-rich hematite + spinel + hibonite have been found as an assemblage in a plagioclase-clinopyroxene rock (paralava, former hornfels) at the Hatrurim Basin, Hatrurim combustion metamorphic Formation. Most spinels show oriented exsolution structures and vary from (Mg0.75${\rm Fe}_{{\rm 0}{\rm. 25}}^{2 +} $)(Al1.80${\rm Fe}_{{\rm 0}{\rm. 20}}^{3 +} $)O4 (with exsolutions) to (Mg0.77${\rm Fe}_{{\rm 0}{\rm. 23}}^{2 +} $)(Al1.95${\rm Fe}_{{\rm 0}{\rm. 05}}^{3 +} $)O4 (homogeneous) indicating a tendency towards magnesioferrite and magnetite, and enrichment in NiO (up to 1.9 wt.%) and ZnO (up to 1.4 wt.%). Hibonite is Ti rich (TiO2 > 8 wt.%) and close to CaAl9Fe3+(Mg,Fe2+)TiO19. Corundum varies in Fe2O3 (4.2–11.8 wt.%). Hematite is also inhomogeneous and contains oriented exsolution structures of corundum. It shows variable concentrations of TiO2 (0.7–5.6 wt.%), Al2O3 (0.7–8.6 wt.%), Cr2O3 (0.2–1.5 wt.%), V2O3 (0.1–1.0 wt.%) and MgO (0.3–2.0 wt.%). Crystallization of this specific assemblage is assumed to be at 1000–1200°C using evaluations for the corundum hematite pair with reference to published experimental data. The active role of superheated oxidised volatiles is suggested during both crystallisation of this corundum-bearing association and host-rock transformation (melting event for hornfels → paralava).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.