We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure ${\cal S}$, there exists a countable field ${\cal F}$ of arbitrary characteristic with the same essential computable-model-theoretic properties as ${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and its partially defined inverse (restricted to the categories of countable graphs and countable fields) are computable functors.
The degree spectrum of a countable structure is the set of all Turing degrees of presentations of that structure. We show that every nonlow Turing degree lies in the spectrum of some differentially closed field (of characteristic 0, with a single derivation) whose spectrum does not contain the computable degree 0. Indeed, this is an equivalence, for we also show that if this spectrum contained a low degree, then it would contain the degree 0. From these results we conclude that the spectra of differentially closed fields of characteristic 0 are exactly the jump-preimages of spectra of automorphically nontrivial graphs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.