Determining the composition of a mixed material is an open problem that has attracted the interest of researchers in many fields. In our recent work, we proposed a novel approach to determine the composition of a mixed material using convolutional neural networks (CNNs). In machine learning, a model “learns” a specific task for which it is designed through data. Hence, obtaining a dataset of mixed materials is required to develop CNNs for the task of estimating the composition. However, the proposed method instead creates the synthetic data of mixed materials generated from using only images of pure materials present in those mixtures. Thus, it eliminates the prohibitive cost and tedious process of collecting images of mixed materials. The motivation for this study is to provide mathematical details of the proposed approach in addition to extensive experiments and analyses. We examine the approach on two datasets to demonstrate the ease of extending the proposed approach to any mixtures. We perform experiments to demonstrate that the proposed approach can accurately determine the presence of the materials, and sufficiently estimate the precise composition of a mixed material. Moreover, we provide analyses to strengthen the validation and benefits of the proposed approach.