We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The statistical distributions of main-sequence multiple-star properties reveal invaluable insights into the processes of binary star formation, and they provide initial conditions for population synthesis studies of binary star evolution. Binary stars are discovered and characterised through a variety of techniques. Correcting for their respective selection effects and combining the bias-corrected results is not a trivial process. This is partially because the intrinsic distributions of companion frequency, primary mass M1, orbital period P, mass ratio q and eccentricity e are all interrelated , i.e., f(M1,P,q,e)/= f(M1)f(P)f(q)f(e). In particular, the binary fraction increases with primary mass, especially across short orbital periods, and binaries become weighted towards larger eccentricities and more extreme mass ratios with increasing separation, especially for more massive primaries. Moreover, binary star statistics vary with age, environment and metallicity. This chapter summarises the strengths and limitations of the various observational techniques, and reviews the statistical correlations in the intrinsic (bias-corrected) multiple-star properties.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.