It is well known that the category of comodules over a flat Hopf algebroid is abelian but typically fails to have enough projectives, and more generally, the category of graded comodules over a graded flat Hopf algebroid is abelian but typically fails to have enough projectives. In this short paper, we prove that the category of connective graded comodules over a connective, graded, flat, finite-type Hopf algebroid has enough projectives. Applications to algebraic topology are given: the Hopf algebroids of stable co-operations in complex bordism, Brown–Peterson homology, and classical mod p homology all have the property that their categories of connective graded comodules have enough projectives. We also prove that categories of connective graded comodules over appropriate Hopf algebras fail to be equivalent to categories of graded connective modules over a ring.