We define and study virtual representation spaces for vectors having both positive and negative dimensions at the vertices of a quiver without oriented cycles. We consider the natural semi-invariants on these spaces which we call virtual semi-invariants and prove that they satisfy the three basic theorems: the first fundamental theorem, the saturation theorem and the canonical decomposition theorem. In the special case of Dynkin quivers with n vertices, this gives the fundamental interrelationship between supports of the semi-invariants and the tilting triangulation of the (n−1)-sphere.