The global trajectory control of walking machines is addressed here with particular attention paid to the consequences of actuator redundancy for control and to the inclusion of actuator dynamics in trajectory controller design. Redundancy of actuation, typical of walking machines, results in the trajectory control problem being formulated perforce in a global coordinate frame, instead of the joint space, as in nonredundant manipulators. This lack of one-to-one correspondence between the degrees of freedom of motion in the global coordinate frame and the actuators results in coupling between the different trajectory control loops. A mechanism for reducing this coupling effect is proposed here, along with a procedure to take into account approximately the effect of actuator dynamics in designing the trajectory controllers. The proposed methods are evaluated by simulation for an example problem in legged locomotion and are shown to be effective.