The nature and origin of the clay mineralogy of the Jurassic strata of the British Isles are described and discussed within their lithological and biostratigraphical framework using published and unpublished sources as well as 1800 new clay mineral analyses. Regional clay mineral variation is described systematically for the following formations or groups:
England and Wales
(i) Hettangian-Toarcian strata (Lias Group): Redcar Mudstone Fm.; Staithes Sandstone Fm.; Cleveland Ironstone Fm.; Whitby Mudstone Fm.; Scunthorpe Mudstone Fm.; Blue Lias Fm.; Charmouth Mudstone Fm.; Marlstone Rock Fm.; Dyrham Fm.; Beacon Limestone Fm.; Bridport Sand Fm.
(ii) Aalenian-Bajocian (Inferior Oolite Group): Dogger Fm.; Saltwick Fm.; Eller Beck Fm.; Cloughton Fm.; Scarborough Fm.; Scalby Fm. (in part); Northampton Sand Fm.; Grantham Fm.; Lincolnshire Limestone Fm.; Rutland Fm. (in part); Inferior Oolite of southern England.
(iii) Bathonian (Great Oolite Group): Scalby Fm. (in part); Rutland Fm. (in part); Blisworth Limestone Fm.; Great Oolite Group of southern England; Forest Marble Fm.; Cornbrash Fm. (in part).
(iv) Callovian-Oxfordian: Cornbrash Fm. (in part); Kellaways Fm.; Oxford Clay Fm.; Corallian Beds and West Walton Beds; Ampthill Clay Fm.
(v) Kimmeridgian-Tithonian: Kimmeridge Clay Fm.; Portland Sandstone Fm.; Portland Limestone Fm.; Lulworth Fm.; Spilsby Sandstone Fm. (in part). Scotland
(vi) Hettangian-Toarcian: Broadfoot Beds, Dunrobin Bay Fm. Aalenian-Portlandian: Great Estuarine Group (Dunkulm, Kilmaluag and Studiburgh Fm.s); Staffin Shale Fm.; Brora Coal Fm.; Brora Argillaceous Fm.; Balintore Fm.; Helmsdale Boulder Beds (Kimmeridge Clay Fm.).
Dominating the Jurassic successions are the great marine mudstone formations — the Lias Group, Oxford Clay, Ampthill Clay and Kimmeridge Clay. These are typically characterized by a detrital clay mineral assemblage of mica, kaolin and poorly defined mixed-layer smectite-mica-vermiculite minerals with traces of chlorite. Detailed evidence suggests that this assemblage is derived ultimately from weathered Palaeozoic sediments and metasediments either directly or by being recycled from earlier Mesozoic sediments. A potassium-bearing clay is a persistent component and formed at approximately the same time as the deposition of the host sediment, either in coeval soils or during very early diagenesis.
At three periods during the deposition of the Jurassic (Bajocian-Bathonian, Oxfordian and late Kimmeridgian-Tithonian), the detrital clay assemblage was completely or partially replaced by authigenic clay mineral assemblages rich in kaolin, berthierine, glauconite or smectite minerals. Associated with these changes are major changes in the lithofacies, with the incoming of non-marine and proximal marine strata. The authigenic clay assemblages rich in kaolin and berthierine are generally restricted to the non-marine and very proximal marine beds, those rich in glauconite or smectite are typical of the marine lithofacies. Clay mineral assemblages containing vermiculite and mixed-layer vermiculite-chlorite sometimes occur in the non-marine and proximal marine facies. The causes of these major changes in lithofacies and clay mineralogy are discussed, and present evidence favours an important volcanogenic influence and not climatic control. It is suggested that the Bajocian-Bathonian, Oxfordian and Late Kimmeridgian-Tithonian were periods of enhanced volcanic activity, with centres probably located in the North Sea and linked to regional tectonic changes which caused major modifications of the palaeogeography of the British Isles. The most important of these changes was the development of the central North Sea Rift Dome during the Bajocian and Bathonian. Volcanic ash was widespread in both the non-marine and marine environments and its argillization under different conditions provided the wide range of authigenic clay mineral assemblages.
Metre-scale clay mineral cyclicity is widespread in most of the Jurassic mudstone formations that have been examined in sufficient detail. The cyclicity is defined by systematic variations in the mica/ collapsible minerals (mixed-layer smectite-mica-vermiculite) ratio. This variation is unrelated to changes in lithology and its possible origins are discussed in detail using data from the Kimmeridge Clay provided by Reading University's contribution to the Rapid Global Geological Events (RGGE) Project.